X KETEREX AN2101

Application Note

USB-910H API Library and Include File
Reference Manual

APPLICABLE ADAPTERS

This Application Note applies to the following
Keterex products: KXUSB-910H.

INTRODUCTION

User Application

The Keterex USB-910H Embedded Systems
Interface provides connectivity between a Host PC
and a target system requiring 12C, SMBus, or SPI.
Other interfaces can be supported by “bit-banging”
up to 9 general-purpose I/O. USB transactions are
generated on the Host PC using either the Keterex
USB-900 Control Center application or calls to the KXUSB910H.DLL
provided APl. The USB-910H Adapter converts
these transactions to 12C, SMBus, SPI, or general-

API Calls

purpose /O operations. Built-in scripting %
accommodates complex bus protocols, including ®
forcing and/or detecting general-purpose /O
changes during other operations.
_ , Host PC USB
The KXUSB-910H API provides a set of functions
to control all features in the USB-910H Adapter.
These functions are provided in two files, a DLL o
named “kxusb910h.dll” (or “kxusb910h.so” under Z
Linux) and an include file name “kxusb910h.h”. An
import library file name “kxusb910h.lib” is also
provided. This Application Note describes all API KXUSB-910H
functions, including brief examples. Adapter
KEY POINTS =
Qx
QG

= No Drivers Required

= Acts as an 12C, SMBus, or SPI Master or Slave
= Full I2C/SMBus Multi-Master Support Target SyStem
= Supports up to 16 Slave Addresses

= Up to 64kBytes per Operation
P yies p P Figure 1. Software Stack between the User's

= Flexible Scripting Feature Application and a Target System.
= Firmware Update Supported in the Field.

© Keterex, Inc., 2010. All rights reserved. AN2101-R6

AN2101

1. Introduction

The KXUSB-910H API functions are provided pre-compiled in a 32-bit DLL named “kxusb910h.dIl”
(generated under Microsoft Visual Studio 2010) or “kxusb910h.so.x.x.x” for Linux platforms. This file,
combined with the include file “kxusb910.h”, provides a complete interface to the USB-910H Embedded
System Interface product. This is the same library file used by the Keterex USB-900 Control Center
application. An import library file named “kxusb910h.lib” is also provided to support linking of a user’s
application. All API files can be found in the API directory of the KXUSB-910H Install CD. All source
code for the API can be found in the directory "API\Source\kxusb910h". Source code for a Java native
APl can be found in "APNJava". Read "README.txt" in the various source directories for more
information.

All functions in kxusb910h are implemented as C functions (i.e. they are not contained within a class).
The include file “kxusb910h.h” checks if the user's compiler is C++ compatible and generates the proper
import code as follows:

#ifdef linux

#define KXUSB_API
#else

#ifdef cplusplus

#ifdef KXUSB EXPORTS

#define KXUSB API extern "C" _ declspec(dllexport)
#else

#define KXUSB API extern "C" _ declspec(dllimport)
#endif

#else

#ifdef KXUSB EXPORTS

#define KXUSB _API extern _ declspec(dllexport)
#else

#define KXUSB API extern declspec(dllimport)
#endif

#endif
#endif

This allows the include file to operate with a C or C++ compiler. The KXUSB_EXPORTS macro is used
when generating the library and should not be defined by the user. Software compiled under a Linux
Platform should define the 1inux macro.

All parameters passed to an API function or returned by an API function use custom data types defined in
“kxusb910h.h”. These data types should be used in the host software to guarantee proper operation of
the library functions. The include file also defines constants used by many of the API functions.

2 K KETEREX

AN2101

2. Directory of APl Functions

The following table provides a brief directory of the available API functions:

API Function
(click to follow link)

Description

Setup/Shared Functions

kxFindAdapters Finds all unopened USB-910H Adapters connected to the Host PC.
kxGetSerialString Gets the Serial String for an unopened adapter.

kxOpenAdapter Opens (i.e. connects to) an adapter.

kxGetVersionString Gets the Version String for the opened adapter.

kxEnableFeatures

Sets the features to enable for the opened adapter.

Sets the 1/O voltage for the opened adapter and configures whether the target

kxSetTargetVoltage system is powered by the adapter.

kxGetStatus Gets the status of the adapter.

kxGetError Gets the errors which have occurred since this function was last called.
kxCloseAdapter Closes the opened adapter.

kxGetInData Retrieves the incoming data from the adapter.

kxSetSlaveData Sets the outgoing slave data for the next slave operation.
kxSetSlaveReady Instructs a slave to start listening for its address or slave-select.
kxSetSlaveReady Sets the timeout period when waiting for GPIO states.

kxAbort Attempts to cleanly abort the present operation.

kxStartTimer Starts a general-purpose timer.

kxTimerExpired

Returns KX TRUE if the general-purpose timer has expired.

12C/SMBus Functions

kxl2CsetBitRate

Sets the 12C bit-rate.

kxI2CsetSCLtimeout

Sets the SCL low timeout period.

kx12CsetConfig

Sets the 12C configuration.

kx12CgetConfig

Gets the 12C configuration.

kxI2CfreeBus

Forces the 12C hardware to free the bus.

kxI2CsetAddr

Sets the list of slave addresses the 12C hardware will respond to.

kxI2Cwrite

Instructs the 12C Master to write a block of data to a slave device.

kxl2Cread

Instructs the 12C Master to read a block of data from a slave device.

kxl2Cexecute

Instructs the 12C Master to execute a script.

kxl2CgetAddrindices

Gets the list of indices at which the 12C Slave stored the incoming addresses (if
responded to). These indices correspond to the data array provided by
kxGetInData.

SPI Functions

kxSPlsetBitRate

Sets the SPI bit-rate.

kxSPlsetTiming

Sets the timing of slave-select pin edges.

kxSPlsetConfig

Sets the SPI configuration.

kxSPlgetConfig

Gets the SPI configuration.

kxSPlgetConfig

Instructs the SPI1 Master to transfer a block of data between itself and the slave.

kxSPlexecute

Instructs the SPI Master to execute a script.

GPIO Functions

kxGPIOsetDir

Sets the direction of general-purpose I/O pins.

kxGPIOsetState

Sets the output value of general-purpose 1/O pins.

kxGPlOgetStatus

Returns the status of all general-purpose |/O pins.

K KETEREX

AN2101

3. Adapter Pin Identifiers

The USB-910H Adapter accepts scripts which supports the ability to manipulate the various pins available
on the adapter. Adapter pins (generally referred to as general-purpose I/O, or GPIO, in this document)
are identified in scripts using the following two-character identifiers:

Adapter Pin Pin Identifier

(GPIO ID)
SCLK SK
MISO Ml
MOSI MO
SS SS
SDA SD
SCL SL
GP1 G1
GP2 G2
GP3 G3
NONE NO

4. Data Types

The following C language data types are pre-defined in the file “kxusb910h.h”. These data types are
used to pass and receive values to/from the various API functions.

4.1.

4.2.

KX_U8

Description:
This data type defines an unsigned 8-bit value. It is used only to generate other data
types and is not used directly by any API function.

Definition:
typedef unsigned char KX_US;

Details:
The KX_U8 data type is defined to provide an 8-bit value independent of the compiler
used.
KX _U16
Description:
This data type defines an unsigned 16-bit value. It is used only to generate other data
types and is not used directly by any API function.
Definition:
#ifdef USHRT_MAX == Oxffff
typedef unsigned short KX_U16;
#else
typedef unsigned int KX_U16;
#endif
Details:

The KX_U16 data type is defined to provide a 16-bit value independent of the compiler
used.

K KETEREX

AN2101

4.3.

4.4,

4.5.

4.6.

4.7.

KX_ADAPTER

Description:
This data type contains a unique identifier passed to adapter-specific functions.

Definition:
typedef KX_U8 KX_ADAPTER,;

Details:
The library maintains an internal list of adapters which are established by a call to
kxFindAdapters. A specific adapter can be addressed from this list using the
KX_ADAPTER data type.
KX_BOOL
Description:
This data type contains a true/false boolean value.
Definition:
typedef KX_U8 KX_BOOL;
#define KX_TRUE ((KX_BOOL)1)
#define KX_FALSE ((KX_BOOL)0)
Details:
Most API functions return a KX_BOOL value indicating whether the function succeeded
(i.e. return KX_TRUE) or failed (i.e. return KX_FALSE).
KX VOLTAGE
Description:
This data type contains a voltage value specified in volts.
Definition:
typedef double KX _VOLTAGE;
Details:
The KX_VOLTAGE type is used, for example, when setting the target voltage of an
adapter.
KX_RATE
Description:
This data type contains a rate value specified in kbits/sec.
Definition:
typedef double KX_RATE;
Details:
The KX_RATE type is used, for example, when setting the bit-rate of an adapter.
KX_TIME
Description:
This data type contains a time value specified in seconds.
Definition:

K KETEREX

AN2101

4.8.

Details:

typedef double KX_TIME;

The KX_TIME type is used, for example, when setting the 12C timeout period of an

adapter.

KX_ERROR

Description:
This data type contains a bit field indicating the cause of an error.

Definition:

Details:

typedef KX_U16 KX_ERROR;

#define KX_ERROR_INVALID_COMMAND

#define KX_ERROR_FEATURE_NOT_SUPPORTED
#define KX_ERROR_FEATURE_COMBINATION
#define KX_ERROR_FEATURE_NOT_ENABLED
#define KX_ERROR_INVALID_PARAMETER
#define KX_ERROR_BUFFER_OVERFLOW

#define KX_ERROR_RX_NACK

#define KX_ERROR_BAD_EXPECTED_VALUE

#define KX_ERROR_GPIO_TIMEOUT
#define KX_ERROR_SCL_TIMEOUT
#define KX_ERROR_BUS_ERROR
#define KX_ERROR_RX_OVERRUN

#define KX_ERROR_ABORT_LOST_ARB
#define KX_ERROR_ADAPTER_NOT_FOUND
#define KX_ERROR_ADAPTER_NOT_OPEN
#define KX_ERROR_ADAPTER_TIMEOUT

((KX_ERROR)0x0001U)
((KX_ERROR)0x0002U)
((KX_ERROR)0x0004U)
((KX_ERROR)0x0008U)
((KX_ERROR)0x0010U)
((KX_ERROR)0x0020U)
((KX_ERROR)0x0040U)
((KX_ERROR)0x0080U)
((KX_ERROR)0x0100U)
((KX_ERROR)0x0200U)
((KX_ERROR)0x0400U)
((KX_ERROR)0x0800U)
((KX_ERROR)0x1000U)
((KX_ERROR)0x2000U)
((KX_ERROR)0x4000U)
((KX_ERROR)0x8000U)

A KX_ERROR type is returned by the kxGetError function. This function is generally
called after another API function returns a KX_FALSE, indicating an error occurred. The

following table describes each error value:

KX_ERROR Value

Description

KX_ERROR_INVALID_COMMAND

Indicates that an invalid command
was rejected by the adapter.

KX_ERROR_FEATURE_NOT_SUPPORTED

Indicates that an unsupported feature
(e.g. a feature not defined by one of
the KX_FEATURE values) was
rejected by the adapter.

KX_ERROR_FEATURE_COMBINATION

Indicates that an illegal combination
of features was requested. For
example, only one of the I2C Master,
I2C Slave, SPI Master, or SPI Slave
features may be enabled at a time.

KX_ERROR_FEATURE_NOT_ENABLED

Indicates that a command which
requires a particular feature was
rejected since that feature was not
enabled.

KX_ERROR_INVALID_PARAMETER

Indicates that a command was
rejected because one or more of it
parameters were invalid, e.g. out of
range.

K KETEREX

AN2101

Indicates that incoming data was lost
due to the adapter buffer being full.
Indicates that an 12C Master
KX_ERROR_RX_NACK operation failed because an
unexpected NACK was received.
Indicates that an expected 12C or SPI
value was incorrect.

Indicates that an 12C or SPI operation
KX_ERROR_GPIO_TIMEOUT terminated because a wait for a GPIO
value timed-out.

Indicates that an SCL low timeout
event was detected on the 12C bus.
Indicates that an 12C protocol error
KX_ERROR_BUS ERROR was detected (e.g. an unexpected
STOP).

Indicates that incoming data was lost
while operating as a SPI slave.
Indicates that an 12C operation was
aborted because arbitration was lost.
Indicates that a requested adapter
KX_ERROR_ADAPTER_NOT_FOUND (e.g. during an kxOpenAdapter call)
was not found.

Indicates that an API call was rejected
since no adapter was open.

Indicates that an API call failed due to
KX_ERROR_ADAPTER_TIMEOUT a timeout while waiting for an adapter
response.

KX_ERROR_BUFFER_OVERFLOW

KX_ERROR_BAD_EXPECTED_VALUE

KX_ERROR_SCL_TIMEOUT

KX_ERROR_RX_OVERRUN

KX_ERROR_ABORT_LOST_ARB

KX_ERROR_ADAPTER_NOT_OPEN

4.9. KX_STATUS

Description:
This data type contains a bit field indicating the present status of an adapter.

Definition:
typedef KX_U16 KX_STATUS;

#define KX_STATUS_[2C_MASTER_PENDING ((KX_STATUS)0x0001)
#define KX_STATUS_[12C_SLAVE_PENDING ((KX_STATUS)0x0002)
#define KX_STATUS_12C_LOST_ARBITRATION ((KX_STATUS)0x0004)
#define KX_STATUS_SPI_MASTER_PENDING ((KX_STATUS)0x0008)
#define KX_STATUS_SPI_SLAVE_PENDING ((KX_STATUS)0x0010)
#define KX_STATUS MEMORY_FULL ((KX_STATUS)0x0020)
#define KX_STATUS_ADAPTER_UPDATED ((KX_STATUS)0x0040)
#define KX_STATUS_ERROR ((KX_STATUS)0x8000)
Details:

The KX_STATUS data type is used when calling the kxGetStatus function. Such a call is
made to determine the status of a requested action by an adapter. The following table
describes of each status value:

KX_STATUS Value Description

Indicates that a requested 12C Master
KX_STATUS_12C_MASTER_PENDING | operation is pending, i.e. either
waiting to execute or is still executing.

K KETEREX 7

AN2101

4.10.

4.11.

4.12.

Indicates that a requested 12C Slave
KX_STATUS 12C_SLAVE_PENDING operation is pending, i.e. either
waiting to execute or is still executing.
Indicates that the I12C Master lost
KX_STATUS 12C_LOST_ARBITRATION | arbitration during the present
operation.

Indicates that a requested SPI Master
KX_STATUS_SPI_MASTER_PENDING | operation is pending, i.e. either
waiting to execute or is still executing.
Indicates that a requested SPI Slave
KX_STATUS_SPI_SLAVE_PENDING operation is pending, i.e. either
waiting to execute or is still executing.
Indicates that the outgoing buffer is
full. This bit is used by the library to
KX_STATUS _MEMORY_FULL handshake with the adapter when
transferring data. In general, it will
not be used by the user’s application.
Indicates that the adapter firmware

KX_STATUS_ADAPTER_UPDATED was updated during to a call to
kxOpenAdapter.
Indicates that one or more errors
KX_STATUS_ERROR have occurred since the last call to
kxGetError.
KX_DATA
Description:
This data type contains data (e.g. read or write data) passed to an adapter.
Definition:
typedef KX_U8 KX_DATA;
Details:
The KX_DATA type is used to send and receive byte data to various API functions.
KX_ADDR
Description:
This data type contains an 12C address passed to an adapter.
Definition:
typedef KX_U16 KX_ADDR,;
Details:
The KX_ADDR type is used to send 12C Slave addresses to various API functions.
KX _GPIOIDX
Description:
This data type contains an index value indicating a single adapter pin.
Definition:

typedef KX_U8 KX_GPIOIDX;

#define KX_GPIOIDX_SCLK ((KX_GPIOIDX)0U)

K KETEREX

AN2101

#define KX_GPIOIDX_MISO ((KX_GPIOIDX)1U)
#define KX_GPIOIDX_MOSI ((KX_GPIOIDX)2U)
#define KX_GPIOIDX_SS ((KX_GPIOIDX)3U)
#define KX_GPIOIDX_SDA ((KX_GPIOIDX)4U)
#define KX_GPIOIDX_SCL ((KX_GPIOIDX)5U)
#define KX_GPIOIDX_GP1 ((KX_GPIOIDX)6U)
#define KX_GPIOIDX_GP2 ((KX_GPIOIDX)7U)
#define KX_GPIOIDX_GP3 ((KX_GPIOIDX)8U)
#define KX_GPIOIDX_NONE ((KX_GPIOIDX)255U)

Details:
The KX_ GPIOIDX data type is used when passing a GPIO identifier to various API
functions and in execution strings. The “NONE” pin is used, for example, when setting a
Slave-Select to “NONE?”, i.e. to no Slave-Select.

4.13. KX_GPIOMASK

Description:
This data type contains a bit field indicating a collection of GPIO signals.

Definition:
typedef KX_U16 KX_GPIOMASK;

#define KX_GPIOMASK_SCLK ((KX_GPIOMASK)0x0001U)
#define KX_GPIOMASK_MISO ((KX_GPIOMASK)0x0002U)
#define KX_GPIOMASK_MOSI ((KX_GPIOMASK)0x0004U)
#define KX_GPIOMASK_SS ((KX_GPIOMASK)0x0008U)
#define KX_GPIOMASK_SDA ((KX_GPIOMASK)0x0010U)
#define KX_GPIOMASK_SCL ((KX_GPIOMASK)0x0020U)
#define KX_GPIOMASK_GP1 ((KX_GPIOMASK)0x0040U)
#define KX_GPIOMASK_GP2 ((KX_GPIOMASK)0x0080U)
#define KX_GPIOMASK_GP3 ((KX_GPIOMASK)0x0100U)

Details:
The KX_GPIOMASK data type is used when passing GPIO identifiers to various API
functions.

4.14. KX_STRING

Description:
This data type contains a null-terminated ASCII string used to contain Version and Serial
strings retrieved from an adapter.

Definition:
typedef KX_U8 KX_STRING;

Details:
The KX_STRING type is used to retrieve ASCII strings from various API functions.

4.15. KX_I2CEXESTR

Description:
This data type contains a null-terminated ASCII string to serve as a script of 12C actions
to be executed by an adapter.

K KETEREX 9

AN2101

Definition:
typedef KX_U8 KX_I2CEXESTR,;

Details:

A KX_I2CEXESTR string consists of a script of tokens, each 2 characters long. White
space (spaces or tabs) can be placed between tokens and are ignored by the LIBRARY.
The following tokens are supported:

/F

/S

P

/D

/C

/E

/R

/1

/0

1z

/H

/L

Set the I12C configuration. The following token is expected to represent a
hexadecimal byte that is an OR of the desired KX _I2CCONFIG values. This
configuration remains in effect until changed by a call to kxI2CsetConfig or
another /F token.

Generate a START condition on the 12C bus.
Generate a STOP condition on the 12C bus.

Delay a period of time before continuing the script. The next two tokens are
assumed to indicate the delay in microseconds listed in hexadecimal, MSB first.

Either write a SMBus PEC byte (if performing a write) or read a SMBus PEC (if
performing a read). If a read, the byte is compared against the expected value
and the KX_ERROR_BAD_EXPECTED_VALUE error bit is set if incorrect. The
script is aborted if the KX_I2CCONFIG_ABORT_ON_EXPECT configuration flag
is set. The PEC is calculated using all addresses and bytes transmitted or
received since the last bus-free condition using the SMBus CRC-8 algorithm.

Expect a value. This token requires that the previous byte read match the
following token value. This token can be used, for example, to expect PEC
values calculated using alternative algorithms to SMBus CRC-8. If an expected
value fails, the KX_ERROR_BAD_EXPECTED_VALUE status bit is set and the
execution will be aborted if enabled to do so.

Read a block of data. The next two tokens indicate the number of bytes to read
in hexadecimal, listed MSB first.

Drive a GPIO pin High. The next token indicates the GPIO pin to drive using a
GPIO ID (see Adapter Pin Identifiers). The GPIO is automatically set as an
output.

Drive a GPIO pin Low. The next token indicates the GPIO pin to drive using a
GPIO ID (see Adapter Pin Identifiers). The GPIO is automatically set as an
output.

Float a GPIO pin. The next token indicates the GPIO pin to float (i.e. set as an
input) using a GPIO ID (see Adapter Pin Identifiers). The GPIO is automatically
set as an input.

Wait for a GPIO pin to go High. The next token indicates the GPIO pin to detect
using a GPIO ID (see Adapter Pin Identifiers). The GPIO is automatically set as
an input. Waiting for GP3 is not allowed.

Wait for a GPIO pin to go Low. The next token indicates the GPIO pin to detect
using a GPIO ID (see Adapter Pin Identifiers). The GPIO is automatically set as
an input. Waiting for GP3 is not allowed.

10

K KETEREX

AN2101

HH A valid hexadecimal byte to serve as a write byte.

X The 8-bit ASCII code for character X.

Examples:
“/S 80001122 °A /P Write [0x00,0x11,0x22,0x41] to address 0x40.
“/S81/R0100/P” Read 256 bytes from address 0x40.
“/S0255/S03/R0004/C/P” Write a command (0x55) to address 0x01

followed by a repeated start and a read of 4
bytes plus a PEC byte.

“/HG1/S02AA/P/D0100/S09/R0010/P” Wait for GP1 to go High, write OXAA to address
0x01, delay 256us, then read 16 bytes from
address 0x04.

4.16. KX_SPIEXESTR

Description:

This data type contains a null-terminated ASCII string to serve as a script of SPI Master
actions to be executed by an adapter.

Definition:

Details:

typedef KX_U8 KX_SPIEXESTR;

A KX_SPIEXESTR string consists of a script of tokens, each 2 characters long. White
space (spaces or tabs) can be placed between tokens and are ignored by the LIBRARY.
The following tokens are supported:

/F Set the SPI configuration. The following token is expected to represent a
hexadecimal byte that is an OR of the desired KX_SPICONFIG values. The
token after that provides the GPIO pin to use as the Slave-Select using a GPIO
ID (see Adapter Pin Identifiers). If the Slave-Select pin is “NO” the master will
not assert a Slave-Select. The next pair of tokens provide the number of bytes to
transfer for each Slave-Select cycle in hexadecimal (listed MSB first). The
master will transfer this number of bytes each time the Slave-Select pin is
asserted (whether the pin is “NO” or not). It will then de-assert the pin, delay the
configured period of time, and repeat until all data is transferred. This
configuration remains in effect until changed by a call to kxSPIsetConfig or
another /F token.

/IR Read a block of data with a repeated outgoing byte. The next token in the string
is repeatedly transmitted. The next pair of tokens provide the number of times to
repeat this byte in hexadecimal (listed MSB first).

/1 Drive a GPIO pin High. The next token indicates the GPIO pin to drive using a
GPIO ID value (see Adapter Pin Identifiers). The GPIO is automatically set as an
output.

/0 Drive a GPIO pin Low. The next token indicates the GPIO pin to drive using a
GPIO ID value (see Adapter Pin Identifiers). The GPIO is automatically set as an
output.

K KETEREX 11

AN2101

1z Float a GPIO pin (i.e. set as an input). The next token indicates the GPIO pin to
float using a GPIO ID value (see Adapter Pin Identifiers). The GPIO is
automatically set as an output.

/H Wait for a GPIO pin to go High. The next token indicates the GPIO pin to detect
using a GPIO ID value (see Adapter Pin Identifiers). The GPIO is automatically
set as an input. Waiting for GP3 is not allowed.

/L Wait for a GPIO pin to go Low. The next token indicates the GPIO pin to detect
using a GPIO ID value (see Adapter Pin Identifiers). The GPIO is automatically
set as an input. Waiting for GP3 is not allowed.

/E Expect a value. This token requires that the next token in the execution string
match the previous incoming byte value. If an expected value fails, the
KX_ERROR_BAD_EXPECTED_VALUE error bit is set and the execution will be
aborted if enabled to do so by the present configuration (see KX_SPICONFIG).

/D Delay a period of time before continuing the execution. The next two tokens are
assumed to indicate the delay in microseconds listed as hexadecimal MSB first.

HH A valid hexadecimal byte to serve as a outgoing byte.

X The 8-bit ASCII code for character X.

Examples:
“00 11 22°A” Transfer [0x00,0x11,0x22,0x41].
“00112233/E55” Transfer [0x00,0x11,0x22,0x33] — require that
the last byte received is 0x55.
“/LG2/RO000FF/0G3” Wait for GP2 to go Low, receive 255 bytes while

sending 0x00, then drive GP3 low.

4.17. KX_SPICONFIG

Description:
This data type contains a bit field indicating a SPI transfer mode.

Definition:
typedef KX_U8 KX_SPICONFIG;

Details:

#define KX_SPICONFIG_LSB_FIRST

((KX_SPICONFIG)0x01)

#define KX_SPICONFIG_ABORT_ON_EXPECT ((KX_SPICONFIG)0x02)

#define KX_SPICONFIG_SS_ACTIVE_HIGH
#define KX_SPICONFIG_PHASE

#define KX_SPICONFIG_POLARITY
#define KX_SPICONFIG_SS_HIZ_MISO

((KX_SPICONFIG)0x04)
((KX_SPICONFIG)0x08)
((KX_SPICONFIG)0x10)
((KX_SPICONFIG)0x20)

The KX_SPICONFIG data type is used when calling the kxSPIsetConfig function. The
following table describes each configuration bit value:

KX_SPICONFIG Value Description

KX_SPICONFIG_LSB_FIRST

Instructs the adapter to transmit and receive
all data bytes least-significant-bit first.
Otherwise, the MSB is transmitted / received

12

K KETEREX

AN2101

first.

KX_SPICONFIG_ABORT_ON_EXPECT

Instructs the adapter to abort the operation if
an expected value (i.e. when using the /E
token) is incorrect.

KX_SPICONFIG_SS_ACTIVE_HIGH

Instructs the Adapter to assert the Slave-
Select pin HIGH during each transaction.
Otherwise, the pin is asserted LOW.

KX_SPICONFIG_PHASE

Instructs the adapter to transition/sample
MISO/MOSI on the leading edge of SCLK.
Otherwise, MISO/MOSI transitions/samples of
the trailing edge of SCLK.

KX_SPICONFIG_POLARITY

Instructs the adapter to either idle the SCLK
signal HIGH (when a master) or expect the
SCLK to idle HIGH (when a slave).
Otherwise, SCLK idles low.

KX_SPICONFIG_SS_HIZ_MISO

When operating as a SPI slave, this value
instructs the adapter to tri-state the MISO pin
when its assigned Slave-Select pin is de-
asserted.

4.18. KX_I2CCONFIG

Description:

This data type contains a bit field indicating an 12C configuration.

Definition:
typedef KX_U8 KX_I2CCONFIG;

#define KX_I2CCONFIG_LSB_FIRST

((KX_I2CCONFIG)0x01)

#define KX_I2CCONFIG_ABORT_ON_EXPECT ((KX_I2CCONFIG)0x02)
#define KX_I2CCONFIG_RETRY_ON_LOST_ARB ((KX_I2CCONFIG)0x04)
#define KX_I2CCONFIG_FREE_BUS_ENABLE ((KX_I2CCONFIG)0x08)

Details:

The KX_I2CCONFIG data type is used when calling the kxI2CsetConfig function. The
following table describes the I2CCONFIG values:

KX_12CCONFIG Value

Description

KX_I2CCONFIG_LSB_FIRST

Instructs the adapter to transmit and
receiver all data bytes least-significant-bit
first. Otherwise, the MSB is transmitted /
received first. Address bytes are always
transmitted MSB first.

KX_I12CCONFIG_ABORT_ON_EXPECT

Instructs the adapter to abort the operation
if an expected value (e.g. using the /C
token) is incorrect.

KX_I2CCONFIG_RETRY_ON_LOST_ARB

Instructs the adapter to retry if an operation
terminates due to loss of arbitration.

KX_I2CCONFIG_FREE_BUS_ENABLE

Instructs the adapter to detect the bus as
free if SCL remains high for 3.3 clock
periods.

K KETEREX

13

AN2101

4.19. KX_FEATURE

Description:
This data type contains a bit field indicating a collection of supported features.

Definition:
typedef KX_U8 KX_FEATURE;

#define KX_FEATURE_I2CMST ((KX_FEATURE)0x0001U)
#define KX_FEATURE_[2CSLV ((KX_FEATURE)0x0002U)
#define KX_FEATURE_SPIMST ((KX_FEATURE)0x0004U)
#define KX_FEATURE_SPISLV ((KX_FEATURE)0x0008U)
#define KX_FEATURE_I2CRPU ((KX_FEATURE)0x0010U)

Details:
The KX_FEATURE data type is used when setting which features of the adapter are to
be enabled. The following table describes the available features:

KX_FEATURE Value Description

KX _FEATURE_I12CMST | Enables the adapter as an 12C or SMBus Master device.

KX _FEATURE 12CSLV | Enables the adapter as an 12C or SMBus Slave device.

KX FEATURE_SPIMST | Enables the adapter as a SPI Master device.

KX FEATURE_SPISLV | Enables the adapter as a SPI Slave device.

Connects 2.2kQ resistors between the 12C pins (SCL and
SDA) and the configured I/O voltage. This feature is allowed
regardless of whether the adapter is an 12C Master or Slave.
It is generally best to enable this feature (assuming the pull-
ups are needed) before enabling the 12C Master or 12C Slave
feature. If they are enabled in the same call to
kxEnableFeatures, the adapter will automatically enable the
pull-ups before the 12C interface.

KX_FEATURE_I2CRPU

5. Setup/Shared API Functions

5.1. kxFindAdapters

Description:
This function returns the number of connected, unopened adapters.

Prototype:
KX_ADAPTER kxFindAdapters(KX_BOOL supportDemo);

Arguments:
supportDemo Forces the API to support a demo mode. A 'DEMOQO' adapter will be found
in addition to the actual adapters on the bus.

Return:
This function returns the number of USB-connected, unopened adapters. If no adapters
are found, a value of 0 is returned. Calls to functions requiring a KX_ADAPTER
parameter must be passed a value between 0 and the returned value minus one.

Example:
KX_ADAPTER numAdapters = kxFindAdapters();

14

K KETEREX

AN2101

5.2.

5.3.

5.4.

kxGetSerialString

Description:
This function retrieves the Serial string from a specified, unopened adapter. The adapter
must be unopened to retrieve its serial string.

Prototype:
KX_BOOL kxGetSerialString(KX_ADAPTER adapter, KX_STRING **str);
Arguments:
adapter The ID of the adapter to retrieve the serial string from.
str The function sets this pointer to the address of a static array in memory
containing the serial string. Do not pass this value to free().
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
KX_ADAPTER adapter;
KX_STRING *pStr;

i.f.(.kaetSeriaIString(adapter,&pStr) == KX_TRUE){
printf(“Serial = %s\n”,pStr);
}

kxOpenAdapter

Description:
This function opens and initializes a connected adapter. A call to this function is required
before any additional adapter-specific functions are called for this adapter.

Prototype:
KX_BOOL kxOpenAdapter(KX_ADAPTER adapter);

Arguments:
adapter The ID of the adapter to open.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxOpenAdapter(0) == KX_TRUE){
}

kxGetVersionString

Description:
This function returns the Version string from a given adapter.

Prototype:
KX_BOOL kxGetVersionString(KX_ADAPTER adapter, KX_STRING **str);

Arguments:
adapter The ID of the adapter to open.

K KETEREX 15

AN2101

5.5.

5.6.

str The function sets this pointer to the address of a static array in memory
containing the version string. Do not pass this value to free().

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
KX_ADAPTER adapter;
KX_STRING *str;

if(kxGetVersionString(adapter,&str) == KX_TRUE)
printf(“Version = %s\n”,str);
}

kxEnableFeatures

Description:
This function sets which features are enabled in an adapter.

Prototype:
KX_BOOL kxEnableFeatures(KX_ADAPTER adapter, KX_FEATURE features);

Arguments:
adapter The ID of an open adapter.
features A KX_FEATURE value indicating the features to enable.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxEnableFeatures(adapter, KX_FEATURE_I2CMST | KX_FEATURE_I2CRPU) ==
KX_TRUEX

}
kxSetTargetVoltage

Description:
This function sets the programmable target voltage level for the adapter and sets if the
target voltage is connected to the target. This level establishes the I/O voltage thresholds
of the adapter as well as the voltage applied to the target when enabled. It can take
several milliseconds for the requested voltage to stabilize. Therefore, it is generally
recommend to set the voltage level, delay, then set the enable if needed.

Prototype:
KX_BOOL kxSetTargetVoltage(KX_ADAPTER adapter, KX_VOLTAGE volts, KX_BOOL
enable);
Arguments:
adapter The ID of an open adapter.
volts The requested target voltage in volts. This parameter must be either exactly

5.0, or between 1.65 and 3.6, otherwise an error is returned.
enable If KX_TRUE, the requested target voltage is connected to the target.

16

K KETEREX

AN2101

5.7.

5.8.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxSetTargetVoltage(adapter, 1.8, KX_TRUE) == KX_TRUE){
}
kxGetStatus
Description:
This function provides the current status of an adapter.
Prototype:
KX_BOOL kxGetStatus(KX_ADAPTER adapter, KX_STATUS *status);
Arguments:
adapter The ID of an open adapter.
status The memory location to store the requested status value.
Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
KX_STATUS status;
if(kxGetStatus(adapter,&status) == KX_TRUE &&
(status & KX_STATUS_I12C_MASTER_PENDING)){
}
kxGetError
Description:
This function returns the cause of errors, if any, which have occurred since the last call to
kxGetError.
Prototype:
KX_ERROR kxGetError(KX_ADAPTER adapter);
Arguments:
adapter The ID of an open adapter.
Return:
Returns a KX_ERROR value which indicates the cause of all errors since the last call of
this function. A return value of O indicates no error has occurred. The errors are
automatically cleared after each call to kxGetError.
Example:
if(kxGetError(adapter) & KX_ERROR_ADAPTER_NOT_FOUND){
}

K KETEREX 17

AN2101

5.9.

5.10.

5.11.

kxCloseAdapter

Description:
This function sets all outputs from the adapter to high-impedance, disables the target
VDD and closes communications with the adapter.

Prototype:

KX_BOOL kxCloseAdapter(KX_ADAPTER adapter, KX_BOOL ignoreErrors);
Arguments:

adapter The ID of an open adapter.

ignoreError Passing KX_TRUE causes all errors to be ignored.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxCloseAdapter(adapter,KX_FALSE) == KX_TRUE)X{
}
kxGetIlnData
Description:
This function returns the incoming data from any SPI transaction or 12C read transaction
(e.g. kxl2Cexecute, kxSPlItransfer, etc.).
Prototype:
KX_BOOL kxGetinData(KX_ADAPTER adapter, KX_DATA **rdata, KX_COUNT *rcnt);
Arguments:
adapter The ID of an open adapter.
rdata The function sets this pointer to the location of data retrieved from the adapter.
The pointer value points to a static array - do not pass to free().
rcnt The function stores the number of bytes at this address (0 if no data is available).
Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
KX_DATA *rdata;
KX_COUNT rent;
if(kxGetinData(adapter,&rdata,&rcnt) == KX_TRUE) {
}
kxSetSlaveData
Description:
This function sets the outgoing data to be sent on the next I2C or SPI Slave operation.
Prototype:

KX_BOOL kxSetSlaveData(KX_ADAPTER adapter, KX_DATA *data, KX_COUNT cnt);

18

K KETEREX

AN2101

5.12.

5.13.

Arguments:

adapter The ID of an open adapter.

data A pointer to the slave data.

cnt The number of bytes of slave data.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
KX_DATA rdata[] = {0x00,0x11,0x22,0x33};

if(kxSetSlaveData(adapter,rdata,sizeof(rdata)) == KX_TRUE &&
kxSetSlaveReady(adapter,0) == KX_TRUE) {

}
kxSetSlaveReady

Description:
This function arms the slave for the next incoming request. This function is typically
called just after kxSetSlaveData has been called to set the next outgoing slave data. The
adapter automatically disarms the slave after a completed slave operation (either after
responding to an I2C address and receiving a STOP, or after all outgoing SPI data is
transfer and the Slave-Select pin de-asserts).

Prototype:
KX_BOOL kxSetSlaveReady(KX_ADAPTER adapter, KX_GPIOIDX ss);
Arguments:
adapter The ID of an open adapter.
SS When used to arm the SPI Slave, this value sets the Slave-Select pin used to
activate the slave. When used to arm the 12C Slave, this value has no effect.
If the SPI Slave is to transfer as soon as SCLK toggles, set ss to
KX_GPIOIDX_NONE.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxSetSlaveReady (adapter,KX_GPIOIDX_SS) == KX_TRUE) {
}

kxSetWaitTimeout

Description:
This function sets the maximum allowed time to wait for a GPIO pin state during a SPI or
I2C operation (e.g. due to a “/H” token). If this time is exceeded, the operation is aborted
and an error is generated.

Prototype:
KX_BOOL kxSetWaitTimeout(KX_ADAPTER adapter, KX_TIME timeout);

Arguments:

K KETEREX 19

AN2101

5.14.

5.15.

adapter The ID of an open adapter.
timeout The maximum allowed delay in seconds. If < 0.0, the timeout is set to infinity.
The maximum supported value is 4.194 seconds.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxSetWaitTimeout(adapter,0.1) == KX_TRUE) {
}
kxAbort
Description:
This function aborts the active operation (SPI or 12C, Master or Slave).
Prototype:
KX_BOOL kxAbort(KX_ADAPTER adapter);
Arguments:
adapter The ID of an open adapter.
Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxAbort(adapter) == KX_TRUE) {
}
kxStartTimer
Description:
This function starts a count-down timer. The count-down timer is provided as a
convenience and can be used, for example, to detect when an operation is taking too
long to complete. Only one timer per open adapter can be active at a time. A timer can
be used regardless of whether the related adapter is open.
Prototype:
void kxStartTimer(KX_ADAPTER adapter, KX_TIME time);
Arguments:
adapter The ID of an adapter.
time The timer will expire after this number of seconds.
Return:
none.
Example:
kxStartTimer(adapter,5.0); /I set the timer to expire in 5 seconds.

while(kxTimerExpired(adapter) '= KX_TRUE) ; // wait the 5 seconds

20

K KETEREX

AN2101

5.16. kxTimerExpired

Description:
This function indicates whether the count-down timer has expired.

Prototype:
KX_BOOL kxTimerExpired(KX_ADAPTER adapter);

Arguments:
adapter The ID of an adapter.

Return:
Returns KX_TRUE if the timer has expired, KX_FALSE otherwise.

Example:
kxStartTimer(adapter,5.0); I set the timer to expire in 5 seconds.
while(kxTimerExpired(adapter,) != KX_TRUE) ; // wait the 5 seconds

6. 12C API Functions

6.1.

6.2.

kxl2CsetBitRate

Description:
This function sets the 12C bit-rate for an adapter.

Prototype:

KX_BOOL kxI2CsetBitRate(KX_ADAPTER adapter , KX_RATE kbitsPerSec);
Arguments:

adapter The ID of an open adapter.

kbitsPerSec The bit-rate of the adapter in kbits/second, from 31.25 to 1500 kHz.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxSetBitRate(adapter,100.0) == KX_TRUE) {
}
kx12CsetSCLtimeout
Description:
This function sets the 12C SCL low timeout period for an adapter. The 12C interface will
automatically perform a kxlI2CfreeBus operation if the SCL signal remains low for a
period exceeding this timeout value. If the requested time is < 0.0, the timeout feature is
disabled (i.e. set to infinity)
Prototype:
KX_BOOL kxI2CsetSCLtimeout(KX_ADAPTER adapter , KX_TIME timeout);
Arguments:

adapter The ID of an open adapter.
timeout The timeout period of the adapter in seconds (up to 0.0327sec).

K KETEREX 21

AN2101

6.3.

6.4.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxl2CsetSCLtimeout(adapter,30e-3) == KX_TRUE) {
}
kx12CsetConfig
Description:
This function configures the 12C interface by passing a OR’ed collection of
KX_I12CCONFIG values.
Prototype:
KX_BOOL kxI2CsetConfig(KX_ADAPTER adapter , KX_I2CCONFIG config);
Arguments:
adapter The ID of an open adapter.
config A set of KX_I2CCONFIG fields indicating which options to enable.
Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxl2CsetConfig (adapter,KX_I2CCONFIG_ABORT_ON_EXPECT |
KX_I2CCONFIG_FREE_BUS_ENABLE) == KX_TRUE) {
}
kx12CgetConfig
Description:
This function gets the present 12C interface configuration.
Prototype:
KX_BOOL kxI2CgetConfig(KX_ADAPTER adapter , KX_I12CCONFIG *config);
Arguments:
adapter The ID of an open adapter.
config The function will store the 12C configuration as an OR’ed collection of
KX _I2CCONFIG flags at this address.
Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:

KX_I2CCONFIG config;

if(kxI2CgetConfig(adapter,&config) == KX_TRUE) {

}

22

K KETEREX

AN2101

6.5.

6.6.

6.7.

kxI2CfreeBus

Description:
This function aborts any active 12C operation and forces the adapter to immediately
release the 12C bus.

Prototype:
KX_BOOL kxI2CfreeBus(KX_ADAPTER adapter);

Arguments:
adapter The ID of an open adapter.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
if(kxl2CfreeBus(adapter) == KX_TRUE) {
}
kx12CsetAddr
Description:
This function sets the list of I2C bus addresses for which the 12C Slave feature will
respond. Up to 16 addresses can be enabled using this API function. If the address
count is 0, the adapter responds to all addresses (either 7-bit or 10-bit address
depending on the value of tenBitAddr). The addresses should be right-justified.
Prototype:
KX_BOOL kxI2CsetAddr(KX_ADAPTER adapter , KX_ADDR *addr, KX_COUNT cnt,
KX_BOOL tenBitAddr);
Arguments:
adapter The ID of an open adapter.
addr A pointer to a list of address values (each address is right justified).
tenBitAddr Indicates that the addresses are 10-bits wide rather than 7-bits wide.
The adapter cannot respond to a mix of 7-bit and 10-bit addresses. This
parameter also controls what type of addresses the slave expects when
responding to all addresses.
cnt The number of address values in the list.
Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.
Example:
KX_ADDR addr[] = {0x10,0x20,0x21};
if(kxI2CsetAddr(adapter,addr,sizeof(addr),KX_FALSE) == KX_TRUE) {
}
kx12Cwrite
Description:

K KETEREX 23

AN2101

6.8.

This function initiates an 12C master write operation by an adapter. The bytes stored at
wdata are written to the given I12C address when the bus becomes free. Note that the
function generally returns before the write completes. A call to kxGetStatus should be
issued to determine when the write is complete (by checking the
KX_STATUS_12C_MASTER_PENDING bit).

Prototype:
KX_BOOL kxI2Cwrite(KX_ADAPTER adapter , KX_ADDR addr, KX_BOOL tenBitAddr,
KX_DATA *wdata,KX_COUNT wcnt);

Arguments:
adapter The ID of an open adapter.
addr The slave address to write (right-justified).
tenBitAddr Indicates that the address is 10-bits wide.
wdata A pointer to the write data.
went The number of bytes to write.

Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure. Note that KX_TRUE
indicates that the write was scheduled successfully, not that the write completed
successfully. The actual write status is determined by a call to kxGetStatus.

Example:
KX_DATA wdata[4];
KX_STATUS status;

if(kxI2Cwrite(adapter,0x50,KX_FALSE,wdata,sizeof(wdata)) == KX_TRUE) {
while(kxGetStatus(adapter,&status) == KX_TRUE &&
(status & KX_STATUS_I12C_MASTER_PENDING));

}
kxI2Cread

Description:
This function initiates an 12C master read operation by an adapter. The requested
number of bytes is read from the given 12C address when the bus becomes free. Note
that the function generally returns before the read completes. A call to kxGetStatus
should be issued to determine when the read is complete. A call to kxGetlnData is then
used to retrieve the read data when complete.

Prototype:
KX_BOOL kxI2Cread(KX_ADAPTER adapter , KX_DATA addr, KX_BOOL tenBitAddr,
KX_COUNT rcnt);

Arguments:
adapter The ID of an open adapter.
addr The slave address to read (right justified).
tenBitAddr Indicates that the address is 10-bits wide.
rcnt The number of bytes to read.

Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure. Note that KX_TRUE

24

K KETEREX

AN2101

indicates that the read was scheduled successfully, not that the read completed
successfully.

Example:
KX_STATUS status;
KX_DATA *rdata;
KX_COUNT rcnt;

if(kxl2Cread(adapter,0x50,KX_FALSE,8) == KX_TRUE) {
while(kxGetStatus(adapter,&status) == KX_TRUE &&
(status & KX_STATUS_I2C_MASTER_PENDING));
if(kxGetinData(adapter,&rdata,&rcnt) == KX_TRUE)

}
}

6.9. kxl2Cexecute

Description:
This function initiates an 12C script execution by an adapter. Note that the function
generally returns before the execution completes. A call to kxGetStatus should be issued
to determine when the execution is complete. When complete, a call to kxGetinData can
be used to obtain any incoming data generated by the script.

Prototype:

KX_BOOL kxl2Cexecute(KX_ADAPTER adapter , KX_I2CEXESTR *estr);
Arguments:

adapter The ID of an open adapter.

estr A pointer to the script to execute.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure. Note that KX _TRUE
indicates that the execution was scheduled successfully, not that the execution
completed successfully. A call to kxGetStatus should be made to determine the status of
the execution.

Example:
KX_I2CEXESTR *estr = “/S 80 55 /S 81 /R 0008 /P”;
if(kxI2Cexecute(adapter,estr) == KX_TRUE) {
while(kxGetStatus(adapter,&status) == KX_TRUE &&
(status & KX_STATUS_I2C_MASTER_PENDING));

}
6.10. kxI2CgetAddrindices

Description:

When operating as an I12C slave device, an adapter stores all incoming bytes while
addressed, including the addresses it responded to. This function provides a list of index
values. These index values identify which locations in the data array provided by
kxGetinData contain the addresses. For example, if an index value is 2, the value at
data[2] is the MSB of the incoming address the slave responded to. If the slave is
operating in 10-bit address mode, the next byte holds the LSB of the address. Otherwise
the address only occupies one byte in the array.

K KETEREX 25

AN2101

Prototype:
KX_BOOL kxl2CgetAddrindices(KX_ADAPTER adapter , KX_COUNT **indices,
KX_COUNT *cnt);

Arguments:
adapter The ID of an open adapter.
indices The function sets this pointer to the location of a static array holding the
address indices. This value should not be passed to free().
cnt The function stores the number of address index values at this location.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
KX_COUNT *indices
KX_COUNT cnt;
if(kxI2CgetAddrindices(adapter,&indices,&cnt) == KX_TRUE) {

}

7. SPI API Functions

7.1

7.2.

kxSPlsetBitRate

Description:
This function sets the SPI bit-rate for an adapter during master transactions. The bit rate
does not need to be set for slave operations.

Prototype:

KX_BOOL kxSPlsetBitRate(KX_ADAPTER adapter , KX_RATE kbitsPerSec);
Arguments:

adapter The ID of an open adapter.

rate The bit-rate of the adapter in kbits/second, ranging from 93.75kHz to 24MHz.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxSetBitRate(adapter,1000.0) == KX_TRUE) {

}
kxSPlsetTiming

Description:
This function sets the minimum delay between asserting the SPI Slave-Select signal and
generating the bit period (TSU) and the delay between the last bit period and de-
asserting the slave-select signal (THD). This function also sets the minimum time the
Slave-Select signal must remain de-asserted between SPI transfers (TMIN).

Prototype:

26

K KETEREX

AN2101

7.3.

7.4.

KX_BOOL kxSPlIsetTiming(KX_ADAPTER adapter , KX_TIME tmin, KX_TIME tsu,
KX_TIME thd);

Arguments:
adapter The ID of an open adapter.
tmin The requested TMIN in seconds, from 2e-6 to 55e-6.
tsu The requested TSU in seconds, from 2e-6 to 55e-6.
thd The requested THD in seconds, from 2e-6 to 55e-6.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxSPIsetTiming(adapter,5e-6,5e-6,20e-6) == KX_TRUE) {

}
kxSPIsetConfig

Description:
This function configures the SPI operations.

Prototype:
KX_BOOL kxSPIsetConfig(KX_ADAPTER adapter , KX_SPICONFIG config,
KX_GPIOIDX ss,
KX_COUNT bytesPerSS);

Arguments:
adapter The ID of an open adapter.
config The requested SPI mode provided as an OR’d collection of
KX_SPICONFIG values.
SS The Slave-Select pin to use during master operations. If set to

KX_GPIOIDX_NONE, a master will not assert a Slave-Select pin.

bytesPerSS The number of bytes to transmit per Slave-Select cycle. A master will
de-assert and re-assert the Slave-Select pin after transferring this
number of bytes.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxSPIsetConfig(adapter,KX_SPICONFIG_SS_ACTIVE_HIGH]|
KX_SPICONFIG_LSB_FIRST,KX_GPIOIDX_SS,8) == KX_TRUE) {

}
kxSPlgetConfig

Description:
This function provides the present configure for SPI operations.

Prototype:
KX_BOOL kxSPlgetConfig(KX_ADAPTER adapter , KX_SPICONFIG *config,
KX_GPIOIDX *ss, KX_COUNT *bytesPerSS);

K KETEREX 27

AN2101

7.5.

Arguments:
adapter The ID of an open adapter.
config The function stores the SPI mode at this location as an OR’d collection of
KX_SPICONFIG values.
ss The function stores the Slave-Select pin to use during master operations

Return:

at this location (see KX_GPIOIDX).
bytesPerSS The function stores the number of bytes to transmit per Slave-Select
cycle at this location.

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:

KX_SPICONFIG config;

KX_GPIOIDX ss;

KX_COUNT bytesPerSS;
if(kxSPIgetConfig(adapter,&config,&ss,&bytesPerSS) == KX_TRUE) {

}

kxSPltransfer

Description:

This function initiates a SPI transfer by an adapter. The bytes stored at wdata are shifted
out the MOSI pin. The data received on the MISO pin is shifted into the adapter’s SPI
buffer. This data can be retrieved by a call to the kxGetlnData function. Note that the
function generally returns before the transfer completes. A call to kxGetStatus should be
issued to determine when the transfer is complete (by checking the
KX_STATUS_SPI_MASTER_PENDING flag).

Prototype:

KX_BOOL kxSPlItransfer(KX_ADAPTER adapter , KX_DATA *wdata, KX_COUNT wecnt);
Arguments:

adapter The ID of an open adapter.

wdata A pointer to the MOSI data.

wcent The number of bytes to transfer.
Return:

Example:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure. Note that KX_TRUE
indicates that the transfer was scheduled successfully, not that the transfer completed
successfully. The actual transfer status is determined by a call to kxGetStatus.

KX_DATA wdata[4];
KX_STATUS status;

if(kxSPItransfer(adapter,wdata,sizeof(wdata)) == KX_TRUE) {
while(kxGetStatus(adapter,&status) == KX_TRUE &&
(status & KX_STATUS_SPI_MASTER_PENDING));

28

K KETEREX

AN2101

7.6. kxSPlexecute

Description:
This function initiates a SPI master script execution by an adapter. Note that the function
generally returns before the execution completes. A call to kxGetStatus should be issued
to determine when the execution is complete (by checking the
KX_STATUS_SPI_MASTER_PENDING flag).

Prototype:
KX_BOOL kxSPlexecute(KX_ADAPTER adapter , KX_SPIEXESTR *estr);

Arguments:
adapter The ID of an open adapter.
estr A pointer to the SPI script to execute (see KX_SPIEXESTR).

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure. Note that KX_TRUE
indicates that the execution was scheduled successfully, not that the execution
completed successfully. A call to kxGetStatus should be made to determine the status of
the execution.

Example:
KX_SPIEXESTR *estr = “/1 G1 80 55 81 01 00 /0 G17;
if(kxSPlexecute(adapter,estr) == KX_TRUE) {

while(kxGetStatus(adapter,&status) == KX_TRUE &&
(status & KX_STATUS_SPI_MASTER_PENDING));

}
8. GPIO API Functions

8.1. kxGPIOsetDir

Description:
This function sets the input/output direction of adapter pins not used by an enabled 12C or
SPI feature.
Prototype:
KX_BOOL kxGPIOsetDir(KX_ADAPTER adapter , KX_GPIOMASK outs);
Arguments:
adapter The ID of an open adapter.
outs Pins indicated by this value are set as outputs, otherwise the pins are inputs.
Return:

Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxGPlOsetDir(adapter,KX_GPIOMASK_SS | KX_GPIOMASK_GP1) == KX_TRUE) {

}

K KETEREX 29

AN2101

8.2.

8.3.

kxGPIOsetState

Description:
This function sets the output state of various pins for an adapter. If a pins is presently
configured as an output, the change will occur immediately. Otherwise, the requested
output state will not take effect until the signal is set as an output using the kxGPIOsetDir
function. Signals presently used by an enabled feature are not affected until that feature
is disabled.

Prototype:
KX_BOOL kxGPIOsetState(KX_ADAPTER adapter , KX_GPIOMASK states);

Arguments:
adapter The ID of an open adapter.
states Pins indicated by this value are driven HIGH when configured as an output.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
if(kxGPlOsetState(adapter,KX_GPIOMASK_SS | KX_GPIOMASK_GP1) == KX_TRUE) {

}
kxGPIOgetStatus

Description:
This function returns the present state and direction of all pins as sets of bit masks using
the KX_GPIOMASK data type. The function returns the actual sensed value on the pin
regardless of whether the pin is configured as an input or output or used by another
feature.

Prototype:
KX_BOOL kxGPIOgetStatus(KX_ADAPTER adapter , KX_GPIOMASK *state,
KX_GPIOMASK *dir,KX_GPIOMASK *sensed);

Arguments:

adapter The ID of an open adapter.

state The function stores the GPIO outgoing state values (set by kxGPIOsetState or
scripts) at the indicated location. These are the values the adapter will drive
when each pin is configured as an output and not used by an enabled feature.

dir The function stores the GPIO directions at the indicated location. Signals
whose direction is output have their associated bit set to a 1.

sensed The function stores the GPIO sensed input values at the indicated location.
The sensed value is the value sensed at the pin regardless of whether the
GPIO is an input or output.

Return:
Returns KX_TRUE is successful, KX_FALSE otherwise. If KX_FALSE is returned, a call
to kxGetError can be used to provide the cause of the failure.

Example:
KX_GPIOMASK states,dir,sensed;

30

K KETEREX

AN2101

if(kxGPlOgetState(adapter,&state,&dir,&sensed) == KX_TRUE && (state &
KX_GPIOMASK_GP1){

}
9. Examples

The following sections provide code segments which show how to use most features of the USB-910H
API. This code segments include comments where additional error handling would be required in a real
application.

9.1. Finding and Opening a Specific Adapter as an 12C Master

// Find and open adapter “000100” and enable as an I2C Master with
// the internal pull-ups enabled.

//

KX STRING *str;

// find all available adapters
KX ADAPTER devCount = kxFindAdapters()

// search for an adapter with serial string “000100”
for (KX ADAPTER i = 0 ; 1 < devCount ; i++){
if (kxGetSerialString (i, &str) == KX TRUE &&
!'strcmp (str,”000100”)) break;
}

// 1if found, try to open the adapter

if (i == devCount || kxOpenAdapter (i) != KX TRUE) {
// we failed to find or open the adapter!

}

// enable the I2C master mode with pullups
else if(kXEnableFeatures(i,KX_FEATURE_IZCMSTIKX_FEATURE_IZCRPU) = KX_TRUE){
// failed to enable the desired features!

}

9.2. Performing an I2C Master Write Operation

// Write {0x00,0x01,0x02,0x03} to address 0x20.
// Assumes an adapter is opened and the I2C Master
// feature has been enabled.

KX _STATUS status;
KX DATA wdata[] = {0x00,0x01,0x02,0x03};

// set the bit-rate to 100kbits/sec

if (kxI2CsetBitRate (adapter,100.0) != KX TRUE) {
// failed to set bit-rate

}

// configure the I2C to:
// detect a free-bus condition
// retry if it loses arbitration

K KETEREX 31

AN2101

if (kxI2CsetConfig(adapter, KX I2CCONFIG FREE BUS ENABLE |
KX I2CCONFIG RETRY ON LOST ARB) != KX TRUE) {
// failed to set I2C configuration
}

// initiate the write operation
if (kxI2Cwrite (adapter, 0x20,KX FALSE,wdata,sizeof (wdata)) == KX TRUE) {

// don’t wait more than 5 seconds for the operation to complete
kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value

if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);

}
} while(status & KX STATUS I2C MASTER PENDING) ;
}
else {
// the write failed!
}

9.3. Performing an I2C Master Read Operation

// Read four bytes from address 0x20.
// Assumes an adapter is opened and the I2C Master
// feature has been enabled.

KX DATA *rdata;
KX COUNT *count;
KX STATUS status;

// set the I2C bit-rate

if (kxI2CsetBitRate (adapter,100.0) != KX TRUE) {
// failed to set bit-rate

}

// configure the I2C to:

// detect a free-bus condition
// retry if it loses arbitration
if (kxI2CsetConfig(adapter, KX I2CCONFIG FREE BUS ENABLE |
KX I2CCONFIG _RETRY ON LOST ARB) != KX TRUE) {

// failed to set I2C configuration
}

// initiate a read of 4 bytes
if (kxI2Cread (adapter, 0x20,KX FALSE,4) == KX TRUE) {

32 K KETEREX

AN2101

// don’t wait more than 5 seconds for the operation to complete
kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value

if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);

}
} while(status & KX_STATUS_ I2C_MASTER PENDING) ;

// retrieve the read data
if (kxGetInData (adapter, &rdata, &count) != KX TRUE) {
// data retrieval failed
}
}
else {
// the write failed!
}

9.4. Performing an I12C Master Write/Read Operation

// Write {0x00,0x01,0x02,0x03} to address 0x20, then

// read four bytes back from address 0x20 after a repeated start.
// Assumes an adapter is opened and the I2C Master

// feature has been enabled.

KX DATA *rdata;
KX COUNT *count;
KX STATUS status;

// set the bit-rate

if (kxI2CsetBitRate (adapter,100.0) != KX TRUE) {
// failed to set bit-rate

}

// configure the I2C to:

// detect a free-bus condition
// retry if it loses arbitration
if (kxI2CsetConfig(adapter, KX I2CCONFIG FREE BUS ENABLE |
KX I2CCONFIG RETRY ON LOST ARB) != KX TRUE) {

// failed to set I2C configuration
}

// Execute a script to perform the required operations.
// Address 0x20 becomes 0x40 when left-justified.
if (kxI2Cexecute (adapter,™/S4000010203/S41/R0004/P”) == KX TRUE) {

// don’t wait more than 5 seconds for the operation to complete

K KETEREX 33

AN2101

kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value

if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);

}
} while(status & KX_STATUS I2C_MASTER PENDING) ;

// retrieve the read data
if (kxGetInData (adapter, &rdata, &count) != KX TRUE) {
// data retrieval failed
}
}
else {
// the write failed!
}

9.5. Performing an I12C Slave Write/Read Operation

// Arm the Adapter as an I2C slave prepared to send (i.e. respond

// to a read request) of 4 bytes. The Slave will respond to address
// 0x20 and 0x40.

// Assumes an adapter is opened and the I2C Slave feature has

// been enabled.

KX DATA wdatal] {0x00,0x01,0x02,0x03};
KX ADDR addr[] = {0x20,0x40};

KX DATA *rdata;

KX COUNT *count;

KX STATUS status;

// only used by the free-bus detector

if (kxI2CsetBitRate (adapter,100.0) != KX TRUE) {
// failed to set bit-rate

}

// configure the I2C to detect a free-bus condition

if (kxI2CsetConfig (adapter, KX I2CCONFIG FREE BUS ENABLE) != KX TRUE) {
// failed to set I2C configuration

}

// set the outgoing slave data

if (kxSetSlaveData (adapter,wdata, sizeof (wdata)) != KX TRUE) {
// failed to set slave data!

}

// set the slave addresses (7-bit)

34 K KETEREX

AN2101

if (kxI2CsetAddr (adapter, addr,sizeof (addr),KX FALSE) != KX TRUE) {
// failed to set slave addresses!

}

// Arm the slave and wait for the operation to complete.
// For I2C, the parameter value passed to kxSetSlaveReady is not used.
if (kxSetSlaveReady (adapter,0) == KX TRUE) {

// don’t wait more than 5 seconds for the operation to complete
kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value
if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);
}
} while(status & KX STATUS I2C SLAVE PENDING) ;

// retrieve any write (i.e. incoming) data
if (kxGetInData (adapter, &rdata, &count) != KX TRUE) {
// data retrieval failed
}
}
else {
// the operation failed!
}

9.6. Performing a SPI Master Transfer

// Transfer {0x00,0x01,0x02,0x03} to a SPI slave using Slave-Select
// pin SS.

// Assumes an adapter is opened and the SPI Master

// feature has been enabled.

KX DATA *rdata;
KX COUNT *count;
KX _STATUS status;

// set the SPI bit-rate to 1Mbit/sec

if (kxSPIsetBitRate (adapter,1000.0) != KX TRUE) {
// failed to set bit-rate

}

// set the TMIN, TSU, and THD timing in seconds

if (kxSPIsetTiming (adapter, 5e-6,5e-6,5e-6) != KX TRUE) {
// failed to set SPI timing

}

// configure the SPI to:

K KETEREX 35

AN2101

// Assert the Slave-Select active-high.

// Use SS as the Slave-Select pin.

// Transfer 2 bytes per SS assertion.

if(kXSPIsetConfig(adapter,KX_SPICONFIG_SS_ACTIVE_HIGH,KX_GPIOIDX_SS,2) =
KX TRUE) {

// failed to set SPI configuration
}

// Initiate the transfer.
if (kxSPItransfer (adapter,wdata,sizeof (wdata)) == KX TRUE) {

// don’t wait more than 5 seconds for the operation to complete
kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value

if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);

}
} while(status & KX STATUS SPI MASTER PENDING) ;

// retrieve the incoming data
if (kxGetInData (adapter, &rdata, &count) != KX TRUE) {
// data retrieval failed
}
}
else {
// the transfer failed!
}

9.7. Performing a SPI Master Script operation

i
// Use a SPI Script to perform the following:

// Wait for pin GP1 to go HIGH.

// Transfer {0x00,0x01,0x02,0x03} to a SPI slave.

// Drive pin GP2 HIGH to 128usec.

//

// Assumes an adapter is opened and the SPI Master
// feature has been enabled.

KX DATA *rdata;
KX COUNT *count;
KX STATUS status;

// set the bit-rate to 1Mbit/sec

if (kxSPIsetBitRate (adapter,1000.0) != KX TRUE) {
// failed to set bit-rate

}

36 K KETEREX

AN2101

// set the TMIN, TSU, and THD timing in seconds

if (kxSPIsetTiming (adapter, 5e-6,5e-6,5e-6) != KX TRUE) {
// failed to set SPI timing

}

// configure the SPI to:

// Assert the Slave-Select active-high.

// Use SS as the Slave-Select pin.

// Transfer 2 bytes per SS assertion.

if (kxSPIsetConfig (adapter,KX SPICONFIG SS ACTIVE HIGH,KX GPIOIDX SS,2) !=
KX TRUE) {

// failed to set SPI configuration
}

// Initiate the operation.
if (kxSPIexecute (adapter, “/HGl 00010203 /1G2 /D0080 /0G2”) == KX TRUE) {

// don’t wait more than 5 seconds for the operation to complete
kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value
if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);
}
} while(status & KX STATUS SPI MASTER PENDING) ;

// retrieve the incoming data
if (kxGetInData (adapter, &rdata, &count) != KX TRUE) {
// data retrieval failed
}
}

else {
// the transfer failed!

}

9.8. Performing a SPI Slave Operation

// Arm the Adapter as a SPI slave prepared to transfer 4 bytes.
// The Slave will respond to Slave-Select pin GP1.

// Assumes an adapter is opened and the SPI Slave feature has
// been enabled.

KX DATA wdatal] = {0x00,0x01,0x02,0x03};
KX DATA *rdata;

KX COUNT *count;

KX STATUS status;

K KETEREX

37

AN2101

// configure the SPI to:
// Assert the Slave-Select active-high.
// The other values only affect Master operations.
if (kxSPIsetConfig (adapter, KX SPICONFIG SS ACTIVE HIGH,KX GPIOIDX SS,2) !=
KX_TRUE) {
// failed to set SPI configuration
}

// set the outgoing slave data

if (kxSetSlaveData (adapter,wdata, sizeof (wdata)) != KX TRUE) {
// failed to set slave data!

}

// Arm the slave with GPl as the Slave-Select and wait for the
// operation to complete
if (kxSetSlaveReady (adapter,KX GPIOIDX GPl) == KX TRUE) {

// don’t wait more than 5 seconds for the operation to complete
kxStartTimer (adapter,5.0);

do {
// are we taking too long?
if (kxTimerExpired (adapter) == KX TRUE) {
// operation is taking too long!
kxAbort (adapter) ;
exit (-1);
}

// get the adapter status value
if (kxGetStatus (adapter, &status) != KX TRUE) {
// failed to get the status!
exit (-1);
}
} while(status & KX STATUS I2C SLAVE PENDING) ;

// retrieve any write (i.e. incoming) data
if (kxGetInData (adapter, &rdata, &count) != KX TRUE) {
// data retrieval failed
}
}
else {
// the operation failed!
}

9.9. Use General-Purpose I/0O to Write Bytes to a Port

// Use the general-purpose I/0 to write bytes to a port.
// GP3 is used as a write strobe. All other pins are used to
// hold the write byte.

// declare the list of data to write
unsigned char data[] = {0x11,0x22,0x33,0x44};

// set all GPIO as outputs
if (kxGPIOsetDir(adapter,

38 K KETEREX

AN2101

KX_GPIOMASK SCLK|KX_ GPIOMASK MISO|KX GPIO MOST |
KX_GPIOMASK SS|KX GPIOMASK SDA|KX GPIOMASK SCL|
KX_GPIOMASK GP1|KX GPIOMASK GP2|KX GPIOMASK GP3)

KX_TRUE) {
// failed to set GPIO state
}

// start with all pins low

if (kxGPIOsetState (adapter, 0) != KX TRUE) {
// failed to set GPIO state

}

// for each data byte to write
for(int 1 = 0 ; 1 < sizeof(data) ; 1i++) {

// set the data to write and set GP3 HIGH

if (kxGPIOsetState (adapter, datal[i] | KX GPIOMASK GP3)
// failed to set GPIO state

}

// drive GP3 back low

if (kxGPIOsetState (adapter, datali]) != KX TRUE) {
// failed to set GPIO state

}

!= KX_TRUE) {

K KETEREX

39

AN2101

10. Revisions

AN2101-R3 Included information relating to Linux support.
Corrected the kxSetWaitTimeout maximum value to 4.194sec.
AN2101-R4 Added ‘X ASCII code tokens to scripts.
AN2101-R5 Added information on Java API code.
AN2101-R6 Added the ‘adapter' parameter to most functions.

40 K KETEREX

AN2101

11. Contact Information

Keterex, Inc.

7320 N. Mo Pac Expressway
Suite 201

Austin, Texas 78731

Tel: 512-346-8800

www.keterex.com

Email: support@keterex.com

Information furnished by Keterex, Inc. in this document is believed to be accurate and reliable. However, no responsibility is
assumed for its use. Information in this document is subject to change without notice.

Trademarks: The Keterex name and logo are registered trademarks of Keterex Incorporated. Other products or brand names
mentioned herein are trademarks or registered trademarks of their respective holders.

Use in life support systems: Keterex adapters are not designed for use in life support and/or safety equipment where malfunction
of the product can result in personal injury or death. Your use or sale of these adapters for use in life support and/or safety
applications is at your own risk. You agree to defend and hold us harmless from any and all damages, claims, suits or expenses
resulting from such use.

Limitation of Liability: You acknowledge and agree that, in no event, shall Keterex be liable, whether in contract, warranty, tort
(including negligence or breach of statutory duty), strict liability, indemnity, contribution, or otherwise, for any indirect, special,
punitive, exemplary, incidental or consequential loss, damage, cost or expense of any kind whatsoever, howsoever caused, or for
any loss of production, cost of procurement of substitute goods, loss of capital, loss of software, loss of profit, loss of revenues,
contracts, business, cost of rework, loss of goodwill or anticipated savings, or wasted management time, even if Keterex has been
advised of the possibility or they are foreseeable. The total liability of Keterex on all claims, whether in contract, warranty, tort
(including negligence or breach of statutory duty), strict liability, indemnity, contribution, or otherwise, shall not exceed the purchase
price of these adapters

K KETEREX 41

http://www.keterex.com/
mailto:support@keterex.com?subject=Support

